Ultra Low NO_x Burners for Industrial Processes (CPS# 1463)

Goal: Develop and commercialize ultra-low NO_x burners with exceptionally low cost/performance ratios and enhanced system efficiency for direct and in-direct industrial heating applications

Challenge: Lean premixed combustion is an excellent passive control method for NO_x reduction but needs robust, economical, scalable, and easily adaptable designs to meet diverse system requirements

Benefits: Robust, simple, and reliable pollution reduction technology for most industrial processes. Energy savings by lowering parasitic energy losses and enhance efficiency through "smart" system integration

FY05 Activities: Establish technical foundation for lean/lean fuel staging strategy to increase system efficiency

Participants: Lawrence Berkeley National Laboratory, Maxon Corp, CMC Engineering, Coen Co., MidCo Int'I, PowerFlame, John Zink Co

Ultra Low NO_x Burners for Industrial Processes (CPS# 1463)

Barrier-Pathway Approach

Barriers

- Emissions/efficiency tradeoffs – complex burners consume more power
- Reduced performance

 limited turndown,
 flame instability, drop
 off at partial load
- Higher costs –
 manufacturing, capital,
 & operating

Pathways

- Adapt lean premixed low-swirl burners for process heat and boilers
- Develop engineering rules for scaling and system integration
- Energy savings through performance enhancement methods and "smart" system optimization

Critical Metrics

- Industrial < 9 ppm NO_x
 burners with performance
 range and costs matching
 those of conventional
 burners
- Technical foundation for
 5 ppm NO_x systems

Benefits (est.)	2020
Energy Savings	Good potential
Cost Savings	High
NO _x Reduction	Very High

Technical Background Conventional Nozzle Mixed Burners vs. Advanced Premixed Burners

Nozzle mixed burners (diffusion flames)

- High flame temperature and high NO_x due to burning at close to stoichiometric fuel/air conditions
- High turndown (> 10:1), robust, reliable, and fuel flexible
- Not easily amenable to NO_x control

Premixed burners

- Low flame temperatures of lean flames lower NO_x
- Flame holders dictate performance (< 5:1 turndown) & limit fuel flexibility
- Flame generated flow dynamics are safety and reliability concerns

Technical Background - Examples of Current Low-NO_x Approaches

Challenges for ultra-low NO_x operation

Scaling, staging, turndown, flame stability, controls & cost Burner/chamber coupling and fine adjustments for system integration Economically acceptable designs for smaller industrial systems

Our Approach – Premixed Flames Stabilized by Low Swirl

Novel method discovered in 1991 at LBNL

- Laboratory burner for DOE-BES basic research
- Flame stabilization principle understood

Scientific Interest

- Challenging modeling problem
- Excellent for studying flame turbulence interactions

Technological Interest

- Robust rich to ultra-lean flames
- Simple design
- Patent awarded 1998

Original laboratory LSB with air-jet swirler at 30 kBtu/hr

LSB Circumvents Flame Instabilities & High Lean Blow-off Problems Associated with Conventional Flame Holding Methods

LSBs Access Low NO_x Conditions by Exploiting Aerodynamics of Lean Premixed Flames Instead of Trying to Overcome Them

Vane-Swirler Developed for Commercial and Industrial Applications

- Simple design fundamentally different than conventional vane-swirlers
 - Open center channel allows a portion of flow to bypass swirl vanes
 - Angled guide vanes induce swirling motion in annulus
 - Screen balances flows between swirl and center channel
- Patent awarded in 1999

Swirler for LSB is Simple and Low-Cost

This burner is made of PVC and plastic to showcase the uniqueness of LSB

- Precision machining not required
- Lifted flame does not transfer heat to burner throat
- Estimated fabrication cost of < \$10/unit for pool heaters of 300 KBtu/hr much lower than \$100/unit cost of metal fiber burners

Scaling to Industrial Sizes

- Scientific approach for "smart" adaptation to a broad range of process heat and boiler applications
 - Targeting 300 KBtu/hr to 30 MMBtu/hr burners
- Establish scaling rules
 - Obtain scientific background for low-swirl flows
 - Apply theory on turbulent flame speed to predict blowout/flashback
 - Evaluate trade-off/benefit between two scaling approaches
 - Higher flow velocity vs larger burner diameter
 - Optimize burner to fit chamber geometry

Obtaining Scaling Information Through Laboratory Experiments

- Comparing LSBs of different sizes (2 5") in furnace and boiler simulators with and without FGR (Partnering with CMC Eng., UCI, Maxon, TIAX, Zink and Aqua-Chem)
 - LSB not vulnerable to slight changes in velocity and mixedness
 - NO_x emissions depend primarily on air/fuel ratio
 - Observed 30:1 turndown

Laser Experiments Provided Scientific Explanation for LSB's Robust Performance

- Analyses drawn upon the theories on combustion aerodynamics and flame chemistry
- LSB self-similar flowfield key to its robust operation
- Knowledge essential for identifying, prioritizing and resolving operational issues
 - Placement of flame ignitor
 - Protocol to maintain flame stability during load change
 - Premixing requirement
 - Conditioning of flow supplied to the burner

Found Answers to Key Scaling Questions

- What are the critical roles of LSB components on its operation?
 - Size of center channel: Controls back pressure
 - Exit tube length: Minimum length needed for proper operation
 - Vane angle: Flame discharge angle
 - Vane length: Improves turndown but can increase back pressure
 - Screen placement position: Upstream placement preferred
 - Screen type: Not critical
- How high can we push the throughput?
 - From 8 to 270 ft/sec without swirl adjustment
- Does burner diameter change its performance?
 - No, flame stability and operating range are size independent
- Is there a convenient scaling rule that engineers can use?
 - YES!

Engineering Rule 1st Step – New Derivations of Swirl Number to Quantify Swirl Rates

- New expression uses easily measurable parameters
 - Ratio of center channel radius to burner radius, $R = R_c/R_b$
 - Straight or curved vane with angles, α
 - Ratio of mass flow rates through center channel and swirl annulus, m
 - Standard pressure drop procedure to obtained m from different screens

LSB Scaling Rules

- Keep swirl recess at 1 to 1.5 diameter
- Apply 0.4 < S < 0.55 criterion
 - Center-channel/burner ratio 0.5 < R < 0.6
 - Larger R increase drag thus blower power
 - Vane angle between 37° to 45°
 - Vane can be curved or straight
 - Overlapping vanes increase turndown
 - Optimize burner by using different screens to change S
 - Screen geometry is not critical
 - Larger openings reduce clogging
 - Other options available to change m
- Constant velocity scaling for power output
 - Output power scaled by the square of the burner diameter
 - Minimum operating conditions at bulk flow of 10 ft/s
- Optimum flame closure at 3 to 4 R_b

Applied Engineering Rules to Scale LSB up to 20" and 25 MMBtu/hr

- NO_x correlates primarily with air/fuel ratio
 - Chamber geometry
 has some effect due to
 internal flow pattern
 and residence time
 - Cross < 9 ppm (3% O_2) threshold at 3% to 5.5% O_2

LSB flame is quiet and remains stable even at high excess air and FGR

Commercialization for Process Heat

- Maxon Corporation licensed LSB in 2002
- Target ultra-low NO_x market (< 9 ppm at 3% O₂ guaranteed) for industrial heating, baking and drying
- First products of 1 6 MMBtu/hr, 10:1 turndown available since Sept. 2003
- 33 units shipped and SCAQMD BACT certification pending
- Demonstrated improvement in product quality for paint curing and food processing
- Products up to 25 MMBtu/hr being developed targeting 20:1 turndown

Maxon Identified Significant Economic and Technical Advantages of LSB

- Design scales by governing equations
 - A radical departure from experimentation approach
- Size compatible to existing equipment
- Can be fabricated with no initial re-tooling or new patterns - fewer parts made of common materials
- Use existing control for conventional high NO_x burners
- Flame is not in contact with burner tip
 - No thermal stresses to cause metal fatigue
- Lower operational cost, and greater ease of operation, thanks to simpler combustion process

LSB Adaptation to Indirect Heat & Implementation of Enhancement Schemes

- Reduce operating back pressure of LSB (accomplished)
 - > 50% reduction with no change in performance
 - Obtained drag coefficients for sizing fan power
- Flue gas recirculation (demonstrated & in progress)
 - TIAX developed and tested internal FGR/premixer
 - Tests in boilers with external FGR (Zink, Aqua-Chem, & Coen)
- Partial reforming to reach < 2 ppm NO_x (demonstrated)
 - Traces of H₂ enhance flame stability and lower CO
 - Steam reformer (CMC Engineering & Sud-Chemi)
 - Instant on plasmatron reformer (MIT)
- Lean/lean Fuel Staged LSB (in progress)
 - Consumes excess air from first stage lean flame (Maxon)
- Highly preheated combustion (demonstrated from DOE-DER gas turbine project)
 - Increase efficiency through heat recovery

TIAX Developed and Tested Venturi Premixer and FGR Entrainer for LSB

- Computation fluid dynamics (CFD) to optimize design for a R = 0.8 LSB at 7.5"
- Higher than expected NO_x attributed to in-chamber circulation

LSB Tested in Commercial Watertube & Firetube Boilers with External FGR

- Use blower and controls for the commercial boiler
- Demonstrated low NO_x at partial load
- LSB shows good promise for improving system efficiency

2 ppm NO_x Concept -- FGR + LSB + Partially Reformed Natural Gas (PRNG)

- Exploit combustion of hydrogen enriched natural gas
 - Enhance flame stability & CO burnout
 - Use LSB to capture these benefits
 - Partial reformer to produce optimum H₂:CH₄ ratio in fuel
- Developed prototype partial reformer
- Concept verified in 50 KBtu/hr spa heater
 - 0 < FGR < 0.30 < PRNG < 0.050.7 < φ < 0.9

Laboratory Demonstration of LSB/FGR/PRNG Concept for Boilers

- Developed and evaluated partial reformer prototype
 - Capability to follow load
 - 2 to 10 liter/MW are reasonable in a typical boiler
- Concept demonstrated in water heater simulator
 - PRNG (5%) helps maintain flame stability at high FGR
 - PRNG has no effect on NO_x but is effective in reducing CO
 - Steam (≈5%) has no effect on LSB performance
 - Broadened NO_x-CO valley to access 2 5 ppm NO_x
- Energy to operate LSB/FGR/PRNG scheme consistent with current low emissions systems
 - Estimated 0.7% efficiency tradeoff for reforming to 20% H₂

Progress Summary

- Developed and applied scientific based engineering rules for scaling and adaptation of LSB to process heat and boilers
 - Understanding of the roles of combustion chemistry and combustion fluid mechanics enables a "more science less art" approach
- Commercialized < 9 ppm NO_x burners for direct process heat (0.3 6 MMBtu/hr) and assisting Maxon in developing > 30 MMBtu/hr burners
 - Met emission targets, exceeded cost/performance expectation
- Collaborating with four companies to develop < 9 ppm NO_x LSB for boilers of up to 10 MMBtu/hr
 - Requires 50% less FGR, demonstrated ease of adaptation and load following
- Exploring next generation < 9 ppm NO_x LSB using lean/lean staging scheme to further improve efficiency
 - LSB provides unique lean core for staging
- Demonstrated LSB/FGR/PRNG concept for 2 ppm NO_x boiler systems
 - Seeking new partners on scaled up LSB with internal FGR + PRNG

Outlook

- Develop scaling rules for adapting LSB to different boiler shapes
 - Guidelines to adjust LSB design for different chamber geometries
 - Prevent undesirable in-chamber flow pattern
- Field demonstration of LSB for small boilers and H₂O heaters
 - Zink, Coen, PowerFlame, & MidCo Int'l
- Seek partnership to develop LSB for large boilers (> 50 Mbh)
- Develop lean/lean Fuel Staged LSB (FSLSB) scheme for in-direct process heat
- Continue development of the LSB/IFGR/PRNG burner system
 - Highly preheated air and FGR for FSLSB
- New system designs to capture full benefit of LSB
 - Optimize heat transfer from a more compact flame
 - Better recovery or utilization of waste heat

Market Potential & Commercialization Plans

Direct fire process heat applications of 0.3 - 50 MMBtu/hr

<u>Commercialization Plan</u>: already commercialized for 0.3 – 6 MMBtu/hr, larger capacity products being developed **Indirect fire process heat application of 5 – 50 MMBtu/hr**

<u>Market Potential</u>: Excluding boilers and petrochemical furnaces, total markets for indirect fired burners are substantial in energy usage (0.8 to 1.0 Quad) and are larger than those of direct fire burners

<u>Plan and progress</u>: laboratory study of fuel staged LSB to develop a prototype burner that will achieve 9 – 15 ppm NOx with < 10% O2

Steam and Water Boiler 0.3 - 10 MMBtu/hr

 $\underline{\textit{Market Potential}}$: Scale down of low-NO_x and ultra-low NO_x burners developed for larger boilers to these smaller sizes may not be economically feasible

Plan and progress: Planned demonstration in boilers up to 10 MMBtu/hr

<u>Products:</u> Test results, scaling rules and engineering guidelines

Method of dissemination: participate in laboratory tests and field trials with burner OEMs.

Large boilers up to 100 MMBtu/hr

<u>Market Potential</u>: LSB for indirect fire process heat has already been demonstrated at 25 MMBtu/hr and this design should also be applicable to large utility boilers

Plan and progress: Seeking research partners

<u>Products:</u> Test results, scaling rules and engineering guidelines

Method of dissemination: participate in laboratory tests and field trials with burner OEMs

Petroleum Refinery

Market Potential: already demonstrated to operate on mixtures of H₂ and hydrocarbons

<u>Plan and progress</u>: Seeking research partners to continue development

Products: Test results, scaling rules and engineering guidelines

Method of dissemination: participate in laboratory tests and field trials with burner OEMs